Несущие элементы здания

Конструктивная система зданий и сооружений

Конструктивная система зданий и сооружений. Основы проектирования

Конструктивная система зданий состоит из взаимосвязанных между собой элементов строения. Все вертикальные и горизонтальные составляющие работают в единой совокупности и обеспечивают устойчивость, жесткость и прочность возводящихся сооружений. Горизонтальные конструкции воспринимают на себя бытовые и эксплуатационные нагрузки и передают их вертикальному несущему каркасу. Элементы остова здания противодействуют ветровым усилиям, воспринимают нагрузки от человеческой деятельности, несут на себе вес горизонтальных составляющих и передают воздействия на фундамент и основание.

Эти конструкции представлены в сооружении элементами, которые в плане составляют большую протяженность. Конструктивная система зданий предполагает, что плиты, монолитные участки, балки, ригеля и фермы проектируют из бетона, металла, дерева в зависимости от требуемой нагрузки и пролетных размеров.

Изначально, на заре эпохи строительства, горизонтальные перекрытия строились по принципу опорных балок с настилом из материала покрытия. Но современное проектирование зданий и сооружений использует железобетонные пустотные, ребристые, п-образные, корытные плиты перекрытия, которые одновременно объединяют в своей работе опорные ригеля и площадь, пригодную для эксплуатации.

Осуществляется по схеме, когда воздействие передается на все несущие вертикальные элементы или распределяется на выбранные для этой цели конструктивные жесткие стены, диафрагмы, связи между стойками или колонны. Для индустриальных сооружений конструктивная схема предусматривает совмещенный способ передачи нагрузок с распределением горизонтальных усилий на элементы жесткости и пропорционально между вертикальными составляющими.

Плиты перекрытия относят к несущим диафрагмам жесткости, они совмещают горизонтальное распределение нагрузок и передачу их вертикальным элементам. Железобетонные плиты выравнивают площадь в помещении и перемещают усилия, благодаря жесткому соединению с вертикальными конструкциями.

Применение железобетона обусловлено тем, что по требованиям противопожарной безопасности, плиты высотных зданий должны выполняться из несгораемого материала. Экономическое обоснование затрат на изготовление панелей перекрытия позволило применять их массово в строениях любого типа. Плиты в конструкции здания выполняют сборными, монолитными или сборно-монолитными.

В соответствии с применяемым видом вертикальных элементов, собирающих усилия, конструктивная схема зданий подразделяется на четыре основных вида:

  • плоскостная система содержит в составе только стены и ребра жесткости;
  • каркасная и рамная, состоящая из стержневых и ограждающих (диафрагмовых и стеновых) составляющих;
  • ствольная, вмещающая на всю высоту постройки внутренние стержни объемно-пространственного полого сечения;
  • оболочковая система, применяющая наружные объемные решения в виде панциря замкнутого типа с тонкими элементами.

Индустриальные конструктивно-технологические системы зданий

Жилые дома имеют собственные типологические признаки, к ним относят вертикальные несущие элементы, располагающиеся в плоскости стен. Использование колон в качестве основных конструкций уже на первоначальном этапе индустриального развития позволило выделить четыре схемы проектирования:

  • с поперечным размещением опорных ригелей;
  • с продольным расположением несущих балок;
  • с перекрестной системой устройства длинномерных элементов;
  • без применения в конструкции любых прогонов.

Проектирование зданий и сооружений по индустриальному методу позволило не только сделать работу перекрытий более взаимосвязанной, но и расширить число типов вертикальных несущих элементов. Совсем недавно применяется конструктивное решение с использованием стволов жесткости замкнутого типа. Эти элементы располагают обычно в центральной части строения, чтобы удобно было расположить там вентшахты, лифты, мусоропроводы. Большие по протяженности постройки требуют установки нескольких стволов жесткости.

Конструктивная схема в виде несущих оболочек является молодым архитектурным решением. Ее внешний вид может имитировать обилие призм, цилиндров, пирамид или других объемных геометрических фигур.

Схема здания является обобщенной статической характеристикой постройки, не ставящей целью определить материал производства и метод строительства. Например, бескаркасная стеновая плоская конструкция одновременно эффективно работает в исполнении из кирпича, дерева, бетона, пенобетона и многих других современных материалов.

Комбинированная конструктивная система зданий описывает вариант проектировочного решения по составу и типу расположения основных продольных и поперечных элементов в разных направлениях. Ее тип выбирают на первоначальном этапе проектирования с учетом выдвинутых технологических эксплуатационных требований и рационального объемно-планировочного решения.

Помимо этих аспектов, во внимание при выборе проектной схемы принимают характер распределения горизонтальных усилий и взаимодействие их с вертикальными каркасными элементами. Конструктивные системы промышленных зданий определяют с учетом влияния архитектурного решения и типа строения. На выбор проекта оказывают влияние этажность постройки и условия строительства в инженерно геологическом плане.

Применение различных конструктивных решений в проектировании домов и построек

Каркасное решение с рамным пространственным вариантом применяется в строительстве стойких к сейсмологическим катаклизмам зданиях и постройках высотного типа более девяти этажей, а также в других строениях в обычных условиях. Это основная развитая система проектирования зданий, в жилищном строительстве применяется редко из-за необоснованной экономической дороговизны.

Бескаркасный тип пространственного решения используется в строительстве жилищных построек, применяют для проектирования высоток до 30 этажей. Объемно-блочная конструктивная система зданий состоит из несущих элементов, составленных из помещенных один на другой объемных самонесущих блоков. Так называемые столбы работают в связке, благодаря прочному соединению между собой при помощи жестких иди гибких связных элементов.

Система относится к комбинированным схемам с неполным каркасом и основывается на распределении функций стационарного равновесия между стержневыми и стеновыми несущими изделиями. Конструктивные системы высотных зданий построены на принципе передачи горизонтальных нагрузок на вертикальные стеновые диафрагмы, а на стержневые элементы действуют вертикальные усилия, возникающие в каркасе. Таким методом возводится большинство высотных панельно-каркасных зданий жилого типа в обычных условия строительства и в сейсмологических опасных районах.

Основывается на совместной работе блоков и элементов каркаса, причем объемные конструкции выступают в качестве несущих или навесных элементов. С помощью железобетонных блоков заполняют пространство в несущей каркасной решетке. Нагружаемые элементы устанавливают один на другой на горизонтальных платформах каркаса, которые устраиваются через 3-5 этажей. Такая система отлично себя зарекомендовала в постройках выше 12 этажей.

Архитектурные и экономические требования определяют схему каркаса при выборе проекта. Длинномерные элементы проектируют так, что они не ущемляют планировочное решение, при этом потолочные ригели не выступают на поверхности в жилых постройках. Поперечное расположение прогонов характерно для высотных зданий с регулярной ячеистой структурой в плане (гостиницы, общежития), при этом шаг несущих ригелей чередуется со стенами и перегородками. Продольное расположение длинномерных нагружаемых балок применяется в проектах жилых зданий квартирного типа.

Безригельный каркас применяется при возведении жилых домов, если использование сборных железобетонных конструкций нецелесообразно из-за отсутствия в данном регионе крупных производственных объединений. Безбалочная система характеризуется невысокой надежностью и дороговизной, используется в строительстве монолитных и комбинированных сборно–наливных строений по методу подъема этажей и скользящей опалубки.

Это понятие характеризует конструктивное решение в комплексе технологического решения по способу возведения строения и выбору материала для применяющихся элементов и узлов. Конструктивные строительные системы зданий проектируются с несущими стенами из мелкоразмерных блоков, кирпича, естественного камня, керамики или бетона. Системы подразделяют на полносборные и традиционные.

В основе системы лежит ручное выполнение кладки стен. Говоря об индустриальном методе строительства, следует отметить, что от традиционной схемы остается возведение ограждающих элементов. Все остальные детали здания, такие как перекрытия, лестницы, прогоны, колонны и другие, заимствованы в индустрии от полносборного проекта, что возводит традиционное строительство на высокий уровень индустрии.

У традиционной системы преимущество состоит в том, что малые размеры стеновых камней позволяют строить дома различной формы, любой высоты. Кирпичные стены надежно эксплуатируются длительное время, имеют высокий порог огнестойкости, лицевая кладка не требует штукатурных работ. К недостаткам относят большую трудоемкость и зависимость прочностных характеристик от технологии производителя и мастерства каменщика.

По этой схеме выполняют проекты домов, возведение которых основывается на монтаже крупных сборных элементов (панелей, блоков), изготовленных из кирпича, керамики, железобетона. Полносборные объекты строят по системам:

  • из крупных блоков;
  • с применением панелей;
  • с навеской стеновых плит на каркасе;
  • из объемных блоков;
  • из монолитного бетона.

Такие виды конструктивных систем зданий используются в строительстве жилых построек высотой до 22 этажей. Крупные горизонтальные блоки ставятся по типу кирпичной кладки с перевязкой швов. Преимуществами крупноблочной системы является простота и скорость установки элементов, возможность применять различные материалы. Ограниченное количество типоразмеров требует небольшого вложения средств, при этом возводятся разнообразные формы.

По этой схеме проектируются дома высотой от 14 до 30 этажей, соответственно, в сейсмических районах и в обыкновенных условиях. Конструкция стены состоит из отдельных панелей, установленных одна на другую без перевязки швов на цементном растворе. Их устойчивость обеспечивается сваркой закладных деталей, а при эксплуатации прочным соединением связей и стыков. Применение системы снижает трудоемкость до 40%, стоимость возведения до 7%, уменьшает общую массу строения на 20-30%.

Постройки возводятся с несущим каркасом из металла или сборного железобетона и обрамляются навесными панелями из различных материалов. Разрешается строить здания по такому типу до 30 этажей. В основном используется в общественных зданиях, так как в жилищном строительстве она уступает панельной по экономическим и техническим показателям.

Этот метод возведения относится к индустриальным видам и заключается в установке пространственных элементов из железобетона массой до 25 т, содержащих в объеме одно помещение (кухню, комнату, санузел и др.) Блоки выстраивают без перевязки швов. Такой способ позволяет уменьшить трудоемкость еще на 15 % по сравнению с панельным методом. Производство крупнопанельных блоков на 15% дороже, чем панелей. Строят дома малой этажности в сейсмических районах и 16-этажные в обычных условиях.

Их используют для построек повышенной этажности. Конструктивные системы монолитных зданий включают сооружения, в которых все несущие элементы и узлы сделаны с применением железобетона. Комбинированные схемы сборно-монолитного дома предполагают сбор нагрузок на каркас из сборных железобетонных элементов. Монолитные строения проектируют без устройства каркаса, а сборно-монолитные строят с каркасом или без него.

К индустриальным методам в этой области относят строительство с применением бетонирования в опалубке:

Возведение монолитных построек на каркасе выполняют методами:

Монолитная система соответствует по прочности сборным типам строений, расширенно применяется в тех районах, где можно активно использовать местные материалы и не вкладывать средства в развитие производственной базы.

Конструктивный элемент здания — это

Конструктивный элемент здания — это. Основные конструктивные элементы зданий (фундамент, стены, перекрытия, перегородки, крыша, лестница, окна, двери)

Конструктивный элемент здания — это его составные части, которыми пользуются архитекторы, проектировщики, строители для сооружения необходимой конструкции.

Строительство зданий предполагает сборку элементов, от которых зависит назначение и определяющая его структура. Каждый конструктивный элемент здания это его надземная и подземная части.

Они имеют жилое, общественное и промышленное назначение и возводиться могут из природного или искусственного камня или дерева. По своей конструкции они могут иметь одноэтажную или многоэтажную структуру.

Каждая постройка в целом и её составляющие должны иметь высокую прочность, устойчивость, долговечность, огнестойкость.

Жилые постройки представляют объект, выполняющий определенное количество функций, обеспечивающих комфортное пребывание в нем человека. Основные элементы, из которых состоит здание:

  • Фундамент.
  • Подвал.
  • Цоколь.
  • Отмостка.
  • Стены (наружные и внутренние).
  • Перегородки.
  • Лестницы.
  • Перекрытия.
  • Крыши.

Для каждого строения, прежде всего, воздвигается главный конструктивный элемент здания — это фундамент, который обустраивается на участке грунта, служащего ему основанием. На него распределяется совокупность всех нагрузок корпуса. От его прочности зависит жесткость, устойчивость и долговечность здания.

Ни одно сооружение не возводится непосредственно на грунте. Число оснований, различных по своим характеристикам, конструкциям, областью использования, достаточно велико.

Этот элемент здания может быть выполнен в ленточном, плитном или столбчатом варианте, основанием последнего являются отдельные опоры.

Котлован под обустройство ленточного фундамента оформляется с некоторым уклоном стен. Угол наклона рассчитывается индивидуально в каждом случае.

Подвальное помещение обустраивается под домом, в пространстве, ограниченном фундаментом.

Цоколь представляет фрагмент фундамента, расположенного выше уровня земли. Эта часть конструкции здания находится в более агрессивных условиях, чем его вертикальные элементы – стены. На этот элемент действует вес всех выше расположенных надстроек, давление грунта в периоды циклов замерзания и оттаивания.

Все элементы сооружения, размещенные выше плоскости отмостки, состоящие из несущих и ограждающих компонентов, относятся к надземным составляющим возводимого корпуса.

Отмостка определяет границу между верхней и подземной конструкциями постройки. Это специальное покрытие по периметру строения. Его укладка осуществляется под некоторым уклоном в сторону от несущей стены.

Устройство и назначение граничащей конструкции представляет, прежде всего, гидроизоляцию, то есть предохранение здания от воздействия внешних осадков и грунтовых вод в дренаж. Теплая схема отмостки позволит выполнить ещё одну функцию – утепление, предотвращение грунта от морозного пучения.

Использование для обустройства отмостки декоративных и прочных материалов позволяет не только украсить и завершить внешний вид здания. Отмостка выполняет функцию пешеходной дорожки, обеспечивающей подход к зданию.

Наружные стены представляют вертикальную часть ограждения здания. Ими оно ограждается от внешней среды. В устройстве здания им отводится самая сложная позиция. Стены испытывают нагрузки собственного веса, перекрытий, крыш строения. Кроме этого, солнечная радиация, перепады температур внутри и снаружи здания, климатические условия.

Чтобы исключить деформацию наружных и внутренних стен, в строительстве для их возведения используют материалы, отвечающие всем условиям прочности и долговечности.

По своему местоположению конструктивный элемент здания «внутренняя стена» — это разделяющий середину пространства сооружения элемент. На эту часть не влияют никакие нагрузки, кроме их собственного веса. Однако из-за большого внутреннего пространства требуется применение внутренних стен, выполняющих роль несущих. Такие стены опираются на один фундамент и создаются по типу наружных стен, с использованием аналогичных или родственных материалов.

Средние этажи расположены между цокольным и мансардным помещением, предназначены для проживания людей и представляют основные конструктивные элементы зданий.

В плоскость наружных стен этажей встраиваются необходимые для сообщения с внешней средой и лестничными пролетами такие конструкции, как окна, двери.

Перегородки в здании предназначены для разделения внутреннего пространства отдельного помещения. С их помощью возможна перепланировка квартиры по желанию владельца. Никакого силового воздействия они не испытывают.

Лестницы выполняют сообщающую функцию между этажами, обеспечения возможности эвакуации людей в экстремальных ситуациях и представляют основные конструктивные элементы зданий.

Главные лестницы размещены в помещениях, имеющих несущие стены, в которых расположены окна, двери квартир. Все многоэтажные сооружения обустроены наружными аварийными лестницами, необходимыми для работы в аварийных ситуациях спасательных и пожарных служб.

Перекрытия представляют горизонтальные детали строений, которые в конструкции сооружения выполняют разделяющую функцию. Ими формируются этажи в здании, к ним предъявляются особые требования к прочности, жесткости, так как межэтажные перекрытия в доме должны выдерживать собственную массу и вес всех частей сооружения и людей.

Горизонтальные составляющие должны наделяться характеристиками звуко- и теплоизоляции, обусловленными санитарными нормами.

Мауэрлат – выравнивающая опора для установки стропил, основа конструкции крыши.

Ещё один неотъемлемый конструктивный элемент здания — это стропила, которые должны выдерживать собственный вес, материала кровли и нагрузок, обусловленных климатическими условиями: ветра, снега, дождя, солнечной радиации.

Детали стропильной системы рассчитаны на выполнение определенных функций. Стропильная система должна обладать высокой степенью жесткости, чтобы исключить опасные подвижки, которые могут повлечь разрушение не только кровли, может произойти разрушение самого строения.

Чаще всего используется треугольная форма стропильной конструкции, так называемая ферма. По краям верхнего перекрытия здания параллельно устанавливают фермы, связывая их такими соединительными элементами, как ригель (сплошной или в форме решетки линейный элемент – опора для прогонов и плит), прогон (балка, расположенная горизонтально в конструкции крыши, необходима для поддержки кровли) и затяжки.

Замыкает конструкцию строения крыша, в которой сочетаются архитектурно-конструктивные элементы здания и его защитные и декоративные свойства.

Крыша оснащена обязательным элементом – водонепроницаемой оболочкой, кровлей, которая к тому же предохраняет здание от механического воздействия, обладает высокой надежностью и долговечностью. Кроме защитных функций, кровля украшает постройку, придаёт ей индивидуальность.

Несущие и ограждающие конструкции

Несущие конструкции покрытия в промышленных зданиях

Общие сведения о конструкциях покрытия

В системе конструкций промышленного здания покрытие выполняет одну из главных ролей. Оно определяет долговечность здания в целом, характер внутреннего пространства и нередко внешний облик здания. На покрытие одноэтажного здания приходится 20-30, а иногда 40% стоимости и 30% трудоемкости строительства.

Покрытия промышленных зданий, как правило, устраиваются бесчердачными. Состоят они из несущих и ограждающих конструкций. Несущие конструкции покрытия устраиваются в виде ферм, балок, арок и рам, которые поддерживают ограждающую часть, придавая ей уклон, соответствующий материалу кровли.

Ограждающая часть покрытий кроме защиты помещений от атмосферных воздействий вместе с несущими конструкциями обеспечивают зданиям пространственную жесткость.

Независимо от типа покрытий, которые могут быть односкатными, многоскатными, плоскими, шедовыми, криволинейными, они должны иметь хорошую гидроизолирующую способность, паро- и теплозащиту, соответствующую назначению здания, быть прочными, пожаробезопасными и каррозионностойкими, индустриальными в возведении, долговечными и надежными в эксплуатации.

Одним из главных требований, предъявляемых к покрытию, являются их малая масса и экономичность.

Вид и материал несущих конструкций покрытия выбирают с учетом :

— величины и характера нагрузок на покрытие;

— вида и грузоподъемности внутрицехового подъемно-транспортного оборудования;

Кроме того, необходимо учитывать район строительства, систему размещаемых под покрытием коммуникаций и степень агрессивности воздушной среды производства.

Несущими конструкциями плоскостных покрытий, как правило, являются стропильные конструкции (балки и фермы). В случаях, когда шаг колонн превышает шаг стропильных конструкций, в состав элементов покрытия вводят подстропильные конструкции.

Подстропильные конструкции устанавливают на колонны в продольном направлении, а на них опирают стропильные конструкции.

Несущие конструкции плоскостных покрытий выполняются из железобетона, металла, древесины и комбинированными (металлодеревянными и сталежелезобетонными).

В комбинированных несущих конструкциях более полно используются положительные свойства каждого материала.

Так, элементы, работающие на сжатие, выполняют из железобетона и древесины, а элементы, подверженные растяжению,- из металла. В виду этого комбинированные конструкции часто имеют повышенную надежность в работе и большую долговечность.

Железобетонные стропильные и подстропильные балки и фермы, описание конструкции, область применения

Стропильные балки применяют при устройстве односкатных, многоскатных и плоских покрытий зданий в пролетах от 6 до 18 м.

Балки односкатных и плоских покрытий имеют прямолинейных верхний пояс, а балки двух- и многоскатных покрытий – ломаный пояс с уклоном скатов 1:12.

Для перекрытия пролетов 6 и 9 м используют балки таврового сечения с высотой на опорах 590 и 890 мм, а пролетов 12 и 18 м – двутаврового и прямоугольного сечений с высотой на опоре 890, 1190 и 1490 мм.

Балки прямоугольного сечения с отверстиями просты в изготовлении и облегчают прокладку верхних коммуникаций. Однако на них расходуется больше бетона по сравнению с балками таврового и двутаврового сечений.

Для изготовления балок применяют бетон марок 200-500 и предварительно напряженную арматуру.

На верхних поясах балок предусматривают закладные элементы для крепления прогонов или панелей покрытия, на нижних поясах и стенках – закладные элементы для крепления путей подвесного транспорта, а в опорных частях – стальные листы для крепления балок к колоннам.

Стропильные балки крепят к колоннам с помощью анкеров, выпущенных из колонн.

При высоте балок на опоре не более 900 мм используют безанкерный способ крепления, что позволяет снизить расход стали на узле и трудовые затраты.

Стропильные балки двухтаврового сечения для плоских и односкатных покрытий:

а, в – для плоского покрытия, б – для односкатного покрытия

Строительная балка твухтаврового сечения для двух- и многоскатных покрытий

Стропильная решетчатая балка для скатных покрытий

Подстропильные балки предусматривают в покрытиях с балочными стропильными конструкциями, если их шаг принят 6 м, а шаг колонн 12 м. подстропильные балки имеют трапециевидное очертание и тавровое сечение с полкой внизу.

Длина балок 12 м, высота в пролете 1500 мм, на опоре 600 мм, ширина полки 700 мм.

В местах опирания стропильных балок стенки подстропильных балок утолщены до ширины полки.

Крепят подстропильные балки к колоннам и стропильные к подстропильным сваркой закладных элементов.

Стропильные фермы подразделяют на сегментные, арочные безраскосные, с параллельными поясами и треугольные.

Стропильные фермы обладают лучшими технико-экономическими показателями по сравнению с балками. Их применяют при пролетах 18, 24, 30 м.

Сегментные, арочные, а также фермы с параллельными поясами предназначены для покрытий с рулонной кровлей, треугольные – под кровлю из асбестоцементных и металлических волнистых листов.

Для обеспечения нормального уклона рулонной кровли в крайних сегментных и арочных фермах и прилегающих к ним панелях предусматривают столбики для опирания пенелей покрытия.

Решетка ферм позволяет применять панели шириной 1,5 и 3 м. Фермы укладывают через 6, 12 и 18 м.

Наиболее рациональны сегментовые и арочные фермы, имеющие ломанные и криволинейные верхние пояса.

По сравнению с другими у них меньше усилия в элементах решетки, что позволяет делать решетку более редкой.

Незначительная высота этих ферм на опоре позволяет уменьшить общую высоту здания.

Арочные безраскосные фермы технологичны в изготовлении и позволяют рационально использовать межферменное пространство.

Фермы с параллельными поясами имеют простое очертание; они взаимозаменяемы со стальными фермами.

Недостатки таких ферм : большая высота на опоре, из-за чего увеличивается высота стен и неполезный объем здания, необходимость в дополнительных связях в покрытии.

Стропильная арочная безкаркасная ферма

Стропильная ферма с параллельными поясами

Подстропильные фермы, имеющие длину 12 и 18 м, предназначаются для опирания на них стропильных ферм, шаг которых составляет 6 м.

Стропильные и подстропильные фермы изготавливаются из бетона марки 300-500. Нижние пояса их выполняют предварительно напряженными, армируя пучками из высокопрочной проволоки.

В фермах предусмотрены закладные элементы, аналогичные балкам. Крепят фермы к колоннам, а подстропильные между собой сваркой закладных элементов.

Подстропильная ферма. Опирание стропильной фермы на подстропильную

Стальные стропильные и подстропильные балки и фермы, описание конструкции, область применения

Стропильные фермы изготавливают трех основных типов :

— с параллельными поясами;

Под рулонные кровли устанавливают первые два типа ферм с уклоном верхнего пояса соответственно 1,5% и 1:8, а под кровли из асбоцементных и металлических листов – треугольные с уклоном 1:3,5.

Унифицированные стальные фермы изготавливают пролетами 18, 24, 30, 36 м. Применяют их при шаге колонн 6, 12 м и более. Высота ферм на опоре с параллельными поясами 2550-3750 мм, полигональных – 2200 и треугольных — 450 мм. Панели верхнего пояса ферм приняты длиной 3 м.

Пояса и решетки ферм выполняют из уголков и соединяют между собой сваркой с помощью фасонок из листовой стали. Рациональна конструкция ферм с поясами из широкополочных двутавров. Эффективность их заключается в экономии стали и меньших трудовых затратах на изготовление.

С колоннами фермы соединяют шарнирно с помощью надопорных стоек двутаврового сечения.

Стойки крепят к колоннам анкерными болтами, а пояса ферм к стойкам черными болтами.

Треугольные фермы крепят к колоннам аналогично железобетонным.

Стальная стропильная ферма с параллельными поясами

Стальные полигональные стропильные фермы

Стропильная треугольная стальная ферма

Подстропильные фермы отличаются наличием параллельных поясов, в остальном они аналогичны стропильным фермам. Изготавливают их длиной 2, 18 и 24 м и высотой 3130, 3270 и 3750 мм (в зависимости от типа стропильных ферм и их пролета). П

одстропильные фермы соединяют с колоннами посредством надопорных стоек, служащих одновременно опорами стропильных ферм.

Перспективными в промышленном строительстве являются покры­тия с фермами из стальных труб, из тонкостенных балок, с рамами из стальных элементов коробчатого профиля и структурные конструкции.

Эти облегченные стальные конструкции, имею­щие полную заводскую готовность и комплектно поставляемые на стройку, отличаются малой материалоемкостью и резко сокращают сро­ки возведения зданий.

Фермы из стальных труб, имеющие обыч­ную конструктивную схему других ферм, устанавливают на пролеты 18, 24 и 30 м.

Замена уголковых профилей трубами позволяет снизить расход стали на 10-35%. Используемые при этом бесфасоночные соединения поясов и решетки значительно уменьшают трудоемкость из­готовления ферм.

В фермах из труб нет мест для скопления агрессив­ной пыли.

В тонкостенных стальных балках име­ются пустотелые пояса, гладкие или гофрированные стенки из листа толщиной 3-4 мм. Гофры высотой 35-40 мм имеют шаг 1,5 м. Такие балки наиболее целесообразно применять для сетки колонн 12×18 м.

Балки из широкополочных двутавров со сквозными стенами укладывают в покрытиях с сетками колонн 6X12 и 6X18 м. Эти балки изготовляют из двутавров путем продольной зигзагообразной резки их стенок и сварки полученных обеих его частей.

Стальные рамы с коробчатыми сечениями эле­ментов применяют в зданиях с пролетами 18 и 24 м и высотой соответственно 6,98 и 8,18 м.

Коробчатое сечение получают из горячекатаных швеллеров и гофрированных листов-стенок толщиной 3-4 мм.

Такие рамы целесообразно применять в одно- и двухпролетных зданиях с мостовыми кранами грузоподъемностью 5-8 т или без них при шаге колонн 6м.

Несущие конструкции покрытий из дерева, определение, область применения

Несущие конструкции покрытий из дерева имеют высокую прочность и стойкость во многих агрессивных средах, неболь­шую массу, хорошие архитектурно-эстетические качества, просты в массовом заводском производстве, а по долговеч­ности почти не уступают железобетонным и метал­лическим конструкциям.

Применяют их в зда­ниях с нормальным температурно-влажностным режимом, а также в це­хах с агрессивной по от­ношению к другим конст­рукциям средой (тра­вильных, электролизных, красильных, некоторых химических и др.).

В по­крытиях промышленных зданий применяют дере­вянные балки, фермы, арки и рамы.

Деревянные балки, фермы, арки, рамы. Описание конструкции, область применения

Деревянные балки используют в зданиях с пролетами от 9 до 18 м. Наиболее индустриальны клееные бал­ки: из досок, с одной или двумя фанерными стенками и др. По очер­танию различают конструкции балок с параллельными поясами, двухскатные с горизонталь­ным или ломаным нижним поясом.

Клееные балки из досок изготовляют прямоугольного или двутав­рового сечения с высотой на опоре 450-1300 мм и уклоном верхнего пояса 1:10. Длина этих балок от 9 до 18 м. На такие балки можно подвешивать краны грузоподъемностью до 3 т.

Балки с перекрестными дощатыми стенками на гвоздях имеют двутавровое сечение и состоят из двух поясов, двойной стенки и ребер жесткости из брусков. Такими балками пере­крывают пролеты от 9 до 15 м.

Клееные балки с фанерными стенками имеют двутавровое или ко­робчатое сечение; применяют их для перекрытия проле­тов до 18 м. Балки могут иметь волнистые фанерные стенки.

В местах стыков фанеры, а также через 1/8-1/10 пролета в балках двутаврового сечения ставят вертикальные ребра жесткос­ти из брусков. Такие балки по сравнению с другими типа­ми менее трудоемки в изго­товлении и на них меньше рас­ходуется древесины.

а — односкатная; б — двухскатная; в — двускатная ломанного очертания

Деревянная балка с дощатой перекрестной стенкой

Деревянная балка клееная с одной или двумя фанерными стенками

Деревянные фермы применяют для перекрытия пролетов от 12 до 24 м. Наи­более распространены деревометаллические фермы, в кото­рых сжатые элементы выпол­няют из древесины, а растя­нутые из стали.

По очертанию фермы разделяют на :

Сегментные фермы, имею­щие длину 12-36 м, отлича­ются легкостью, малым чис­лом монтажных элементов и простой конструкцией узлов.

Верхний пояс ферм конструируют из клееных блоков криволинейного очертания, нижний — из стальных тяжей или уголков.

Решетку крепят к поясам болтами с помощью стальных пластинок.

Деревометаллическая сегментовая ферма покрытия

1 — элементы верхнего пояса; 2 — деревянные накладки; 3- болты;

4 — металлический вкладыш; 5 — узловой болт

1 — нижний пояс фермы; 2 — фасонки из полосовой стали; 3- монтажные болты;

Многоугольными фермами перекрывают пролеты от 12 до 30 м.

Верхний пояс фермы собирают из брусьев длиной на две панели.

Треугольную решетку со стойками делают из брусьев, соединяют ее с поясами на болтах.

Усилия в решетках таких ферм срав­нительно невелики, что упрощает конструкцию узлов.

Деревометаллическая многоугольная ферма покрытия

1 — деревянная накладка; 2 — металлический вкладыш; 3- узловой болт;

4 — болты; 5 — металлические пластины-наконечники; 6 -раскосы; 7 — верхний пояс фермы

1 — металлические пластины; 2 — раскосы фермы; 3- болты;

4 — нижний пояс фермы

Из трапециевидных ферм и треугольных ферм лучшими технико-экономическими показа­телями отличается клееная ферма с растянутыми опорными раскосами.

Фермы применяют для перекрытия пролетов 12-30м.

Верхний пояс выполняют из досок, нижний (затяжку) — из уголков. Панели верхнего пояса шарнирно соединены с металлической затяж­кой. В фермах приняты треугольные решетки, усиленные стойками.

Трапецивидная деревометаллическая ферма покрытия

Деревометаллическая треугольная ферма покрытия

Верхний пояс ферм может быть клееным или из брусьев. Нижний пояс делают из профильной или круглой стали.

Деревянные арки и рамы применяют реже по сравнению с балка­ми и фермами. Несущие качества и жесткость деревянных конструк­ций можно повысить их армированием. При коэффициенте армирования сечения 0,01-0,04 несущая способность и жесткость деревянных балок повышаются в 1,6-3,2 раза. Кроме того, армированные деревянные конструкции легки, менее деформативны во времени, более надежны в эксплуатации; изготовлять их можно из низкосортной древесины.

Деревянные элементы армируют стальными стержнями или стеклопластиковой арматурой. Соединяют стержни с древесиной эпоксидным клеем.

Армировать дерево более целесообразно внутри, так как арматура скрыта от воздействия среды производства.

Можно применять предварительно напряженные армодеревянные конструкции.

1 — верхний пояс фермы; 2 — металлический вкладыш; 3- деревянные накладки;

4 — болты; 5 — металлический наконечник; 6 — стойка фермы

1 — верхний пояс фермы; 2 — металлический вкладыш; 3- деревянные накладки;

4 — болты; 5 — металлический наконечник; 6 — раскос фермы; 7 — профиль

Армодеревянные конструкции, краткое описание

Армодеревянные конструкции (балки, фермы, арки и рамы) из­готовляют прямоугольного, таврового, двутаврового или коробчатого се­чений.

Клееные деревянные конструкции совершеннее конструкций сплош­ного сечения, так как склеивание повышает прочность и долговечность древесины и позволяет создавать разнообразные конструктивные фор­мы.

Армодеревянные клееные конструкции покрытий

а — балка; б — ферма; в — арка; г — рама

Панели-оболочки КЖС, описание конструкции, область применения

Панели-оболочки КЖС (крупноразмерные, железобетон­ные, сводчатые) предназначаются для покрытий промышленных, общественных, сельскохозяйственных и других зданий с пролетами 12, 18 и 24 м, а при необходимости и для покрытий зданий других пролетов.

Применение панелей КЖС предусматривается в покры­тиях однопролетных и многопролетных зданий с фонарями и без фонарей верхнего света, бескрановых, а также оборудованных мостовыми кранами грузоподъемностью до 30 т или подвесным транспортом, грузоподъемностью до 5 т.

Конструкция панели-оболочки типа КЖС представляет собой короткий цилиндрический пологий предвари­тельно напряженный свод-оболочку с двумя ребрами-диафрагмами сегментного очертания.

Высо­ту поперечного сечения панели в середине пролета принимают 1/20-1/15l0 в зависимости от величины нагруз­ки и пролета.

Очертание верхней поверхности оболоч­ки — по квадратной параболе, минимальная толщина 30 мм.

Диафрагмы проектируют облегченными с верти­кальными ребрами жесткости.

Минимальная толщина стенки диафрагмы в пролете 40 мм, а вблизи опоры 50 мм. Сопряжение оболочки с диафрагмами выполняют с устройством пологих вутов, уклон 1=1/5.

Основная рабочая напрягаемая арматура распола­гается в нижней утолщенной зоне диафрагм. Эта арма­тура принимается в основном из стержневой сваривае­мой стали (одного или двух вплотную расположенных стержней в каждом ребре).

В опорных узлах панели предусматривают сталь­ные анкерные детали, обеспечивающие надежное за­крепление рабочей арматуры в бетоне, выполняющей роль затяжки сводчатой конструкции.

Оболочку армируют по расчету сетками рулонного типа.

Диафрагмы армируют сварными каркасами только в приопорных зонах, а в средней части стержнями-подвесками, расположен­ными в вертикальных ребрах.

Панели типа КЖС проектируют из бетона классов по прочности на сжатие В25-В50.

Конструкция панелей позволяет устраивать в оболочке технологические отверстия диаметром 400-1450 мм, а также прямоугольные отверстия для устройства светоаэрационных или зенитных фонарей размером 2,5х6 или 2,5х9 м.

По контуру отверстия оболочку усиливают утолщением с армированием по расчету.

1 — панель оболочка КЖС; 2 — продольная балка; 3- анкер;

4 — монтажная сварка; 5 — заводская сварка; 6 — листовой шарнир; 7 — закладная деталь балки

Источники:
Конструктивная система зданий и сооружений
Принцип выбора конструктивной системы зданий и сооружений в зависимости от применяемых элементов, степени индустриализации, этажности здания и геологических условий строительства
http://fb.ru/article/258256/konstruktivnaya-sistema-zdaniy-i-soorujeniy-osnovyi-proektirovaniya
Конструктивный элемент здания — это
Строительство зданий предполагает сборку элементов, от которых зависит назначение и определяющая его структура. Каждый конструктивный элемент здания — это его надземная и подземная части.
http://fb.ru/article/274709/konstruktivnyiy-element-zdaniya—eto-osnovnyie-konstruktivnyie-elementyi-zdaniy-fundament-stenyi-perekryitiya-peregorodki-kryisha-lestnitsa-okna-dveri
Несущие конструкции покрытия в промышленных зданиях
Несущие конструкции покрытия в промышленных зданиях Общие сведения о конструкциях покрытия В системе конструкций промышленного здания покрытие выполняет одну из главных ролей. Оно
http://perekos.net/pages/view/1319

COMMENTS